23 research outputs found

    Dynamical study of the empty Bianchi type I model in generalised scalar-tensor theory

    Full text link
    A dynamical study of the generalised scalar-tensor theory in the empty Bianchi type I model is made. We use a method from which we derive the sign of the first and second derivatives of the metric functions and examine three different theories that can all tend towards relativistic behaviours at late time. We determine conditions so that the dynamic be in expansion and decelerated at late time.Comment: 18 pages, 3 figures, to appear in General Relativity and Gravitatio

    Patching up the No-Boundary Proposal with virtual Euclidean wormholes

    Get PDF
    In quantum cosmology, one often considers tunneling phenomena which may have occurred in the early universe. Processes requiring quantum penetration of a potential barrier include black hole pair creation and the decay of vacuum domain walls. Ideally, one calculates the rates for such processes by finding an instanton, or Euclidean solution of the field equations, which interpolates between the initial and final states. In practice, however, it has become customary to calculate such amplitudes using the No-Boundary Proposal of Hartle and Hawking. A criticism of this method is that it does not use a single path which interpolates between the initial and final states, but two disjoint instantons: One divides the probability to create the final state from nothing by the probability to create the initial state from nothing and decrees the answer to be the rate of tunneling from the initial to the final state. Here, we demonstrate the validity of this approach by constructing continuous paths connecting the ingoing and outgoing data, which may be viewed as perturbations of the set of disconnected instantons. They are off-shell, but will still dominate the path integral as they have action arbitrarily close to the no-boundary action. In this picture, a virtual domain wall, or wormhole, is created and annihilated in such a way as to interface between the disjoint instantons. Decay rates calculated using our construction differ from decay rates calculated using the No-Boundary Proposal only in the prefactor; the exponent, which usually dominates the result, remains unchanged.Comment: 23 pages REVTeX plus 7 figure

    Quantum Decay of Domain Walls in Cosmology II: Hamiltonian Approach

    Get PDF
    This paper studies the decay of a large, closed domain wall in a closed universe. Such walls can form in the presence of a broken, discrete symmetry. We study a novel process of quantum decay for such a wall, in which the vacuum fluctuates from one discrete state to another throughout one half of the universe, so that the wall decays into pure field energy. Equivalently, the fluctuation can be thought of as the nucleation of a second closed domain wall of zero size, followed by its growth by quantum tunnelling and its collision with the first wall, annihilating both. We therefore study the 2-wall system coupled to a spherically symmetric gravitational field. We derive a simple form of the 2-wall action, use Dirac quantization, obtain the 2-wall wave function for annihilation, find from it the barrier factor for this quantum tunneling, and thereby get the decay probability. This is the second paper of a series.Comment: 27 pages LaTeX, using revtex and psfig. 3 figure

    Density Perturbations in the Brans-Dicke Theory

    Get PDF
    We analyse the fate of density perturbation in the Brans-Dicke Theory, giving a general classification of the solutions of the perturbed equations when the scale factor of the background evolves as a power law. We study with details the cases of vacuum, inflation, radiation and incoherent matter. We find, for the a negative Brans-Dicke parameter, a significant amplification of perturbations.Comment: 26 pages, latex fil

    Variable Modified Chaplygin Gas in Anisotropic Universe with Kaluza-Klein Metric

    Full text link
    In this work, we have consider Kaluza-Klein Cosmology for anisotropic universe where the universe is filled with variable modified chaplygin gas (VMCG). Here we find normal scalar field ϕ\phi and the self interacting potential V(ϕ)V(\phi) to describe the VMCG Cosmology. Also we graphically analyzed the geometrical parameters named {\it statefinder parameters} in anisotropic Kaluza-Klein model. Next, we consider a Kaluza-Klein model of interacting VMCG with dark matter in the Einstein gravity framework. Here we construct the three dimensional autonomous dynamical system of equations for this interacting model with the assumption that the dark energy and the dark matter are interact between them and for that we also choose the interaction term. We convert that interaction terms to its dimensionless form and perform stability analysis and solve them numerically. We obtain a stable scaling solution of the equations in Kaluza-Klein model and graphically represent solutions.Comment: 11 pages, 13 figure

    Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid as a source

    Get PDF
    We present a method for generating solutions in some scalar-tensor theories with a minimally coupled massless scalar field or irrotational stiff perfect fluid as a source. The method is based on the group of symmetries of the dilaton-matter sector in the Einstein frame. In the case of Barker's theory the dilaton-matter sector possesses SU(2) group of symmetries. In the case of Brans-Dicke and the theory with "conformal coupling", the dilaton- matter sector has SL(2,R)SL(2,R) as a group of symmetries. We describe an explicit algorithm for generating exact scalar-tensor solutions from solutions of Einstein-minimally-coupled-scalar-field equations by employing the nonlinear action of the symmetry group of the dilaton-matter sector. In the general case, when the Einstein frame dilaton-matter sector may not possess nontrivial symmetries we also present a solution generating technique which allows us to construct exact scalar-tensor solutions starting with the solutions of Einstein-minimally-coupled-scalar-field equations. As an illustration of the general techniques, examples of explicit exact solutions are constructed. In particular, we construct inhomogeneous cosmological scalar-tensor solutions whose curvature invariants are everywhere regular in space-time. A generalization of the method for scalar-tensor-Maxwell gravity is outlined.Comment: 10 pages,Revtex; v2 extended version, new parts added and some parts rewritten, results presented more concisely, some simple examples of homogeneous solutions replaced with new regular inhomogeneous solutions, typos corrected, references and acknowledgements added, accepted for publication in Phys.Rev.

    Scalar-Tensor Cosmological Models

    Get PDF
    We analyze the qualitative behaviors of scalar-tensor cosmologies with an arbitrary monotonic ω(Φ)\omega(\Phi) function. In particular, we are interested on scalar-tensor theories distinguishable at early epochs from General Relativity (GR) but leading to predictions compatible with solar-system experiments. After extending the method developed by Lorentz-Petzold and Barrow, we establish the conditions required for convergence towards GR at tt\rightarrow\infty. Then, we obtain all the asymptotic analytical solutions at early times which are possible in the framework of these theories. The subsequent qualitative evolution, from these asymptotic solutions until their later convergence towards GR, has been then analyzed by means of numerical computations. From this analysis, we have been able to establish a classification of the different qualitative behaviors of scalar-tensor cosmological models with an arbitrary monotonic ω(Φ)\omega(\Phi) function.Comment: uuencoded compressed postscript file containing 41 pages, with 9 figures, accepted for publication in Physical Review

    Self-similar cosmological solutions with a non-minimally coupled scalar field

    Get PDF
    We present self-similar cosmological solutions for a barotropic fluid plus scalar field with Brans-Dicke-type coupling to the spacetime curvature and an arbitrary power-law potential energy. We identify all the fixed points in the autonomous phase-plane, including a scaling solution where the fluid density scales with the scalar field's kinetic and potential energy. This is related by a conformal transformation to a scaling solution for a scalar field with exponential potential minimally coupled to the spacetime curvature, but non-minimally coupled to the barotropic fluid. Radiation is automatically decoupled from the scalar field, but energy transfer between the field and non-relativistic dark matter can lead to a change to an accelerated expansion at late times in the Einstein frame. The scalar field density can mimic a cosmological constant even for steep potentials in the strong coupling limit.Comment: 10 pages, 1 figure, revtex version to appear in Phys Rev D, references adde

    Reduced phase space formalism for spherically symmetric geometry with a massive dust shell

    Get PDF
    We perform a Hamiltonian reduction of spherically symmetric Einstein gravity with a thin dust shell of positive rest mass. Three spatial topologies are considered: Euclidean (R^3), Kruskal (S^2 x R), and the spatial topology of a diametrically identified Kruskal (RP^3 - {a point at infinity}). For the Kruskal and RP^3 topologies the reduced phase space is four-dimensional, with one canonical pair associated with the shell and the other with the geometry; the latter pair disappears if one prescribes the value of the Schwarzschild mass at an asymptopia or at a throat. For the Euclidean topology the reduced phase space is necessarily two-dimensional, with only the canonical pair associated with the shell surviving. A time-reparametrization on a two-dimensional phase space is introduced and used to bring the shell Hamiltonians to a simpler (and known) form associated with the proper time of the shell. An alternative reparametrization yields a square-root Hamiltonian that generalizes the Hamiltonian of a test shell in Minkowski space with respect to Minkowski time. Quantization is briefly discussed. The discrete mass spectrum that characterizes natural minisuperspace quantizations of vacuum wormholes and RP^3-geons appears to persist as the geometrical part of the mass spectrum when the additional matter degree of freedom is added.Comment: 36 pages, REVTeX v3.1 with amsfonts. (References updated; minor typos corrected.
    corecore